|
Prawo ArchimedesaPrawo Archimedesa formułuje się słownie w następujący sposób:
Mówiąc inaczej, gdybyśmy dokładnie takie samo ciało "wyrzeźbili" z wody (ale nie z lodu, bo lód jest lżejszy niż woda!), to ciężar tej "rzeźby" dałby nam wartość siły wyporu w wodzie. Oczywiście nie musimy dokładnie rzeźbić ciała - wystarczy, że po prostu weźmiemy tylko tę ilość "materiału" na naszą rzeźbę - czyli wodę mającą tyle samo objętości co ciało. Jakie wnioski wyciągamy z tego prawa:
Wzór na siłę wyporuSiłę wyporu da się zapisać wzorem:
Pływanie ciałPływanie ciał po powierzchni cieczyCiało będzie pływało po powierzchni cieczy, jeśli jego siła wyporu przy maksymalnym zanurzeniu będzie większa niż ciężar tego ciała. Gdy ciało pływa po powierzchni wody siła ciężkości jest równoważona przez siłę wyporu (siły ciężkości i wyporu mają równe wartości, ale przeciwne zwroty). Oczywiście jeśli ciało nie jest całkowicie zanurzone, to siła wyporu ma jeszcze pewien „zapas”, dzięki któremu nawet zwiększenie ciężaru ciała nie spowoduje od razu jego zatonięcia, bo automatycznie może wzrosnąć siła wyporu. Do momentu aż zanurzy się całe. Pływanie ciał całkowicie zanurzonychNieco inaczej wygląda sytuacja ciał całkowicie zanurzonych – łodzie podwodne, zatopione obiekty, balony, tonące przedmioty itd. Tutaj mamy dwie główne możliwości
Na pograniczu tych dwóch przypadków jest jeszcze trzeci: 3. siły wyporu i ciężkości są sobie równe – wtedy ciało pozostaje w bezruchu unosząc się w płynie Powyższy opis zachowania ciała odnosi się tylko do sytuacji, w których początkowo ciało znajdowało się w bezruchu. Jeśli wcześniej nadano mu prędkość może ono chwilowo poruszać się niezgodnie z powyższymi zasadami (do momentu, w którym tarcie płynu nie spowoduje jego zatrzymania). Pływalność a gęstośćW przypadku ciał wykonanych z jednolitego materiału można łatwo przewidzieć czy będą one tonęły, czy wypływały na powierzchnię płynu. Zależy to od gęstości ciał i gęstości płynów w których miałyby one pływać:
|
||||||||||||||||||
Przykłady sił wyporuW cieczy:
Większość obiektów swobodnie pływających w wodzie ma ciężar właściwy zbliżony do ciężaru wody. Dzięki temu mogą one łatwo manewrować swoją pływalnością - wynurzać się lub zanurzać głębiej. W gazie:
|
|||||||||||||||||||
O balonachBalonu unoszą się w powietrzu ponieważ siła wyporu na nie działająca może być większa niż siła ciężkości. Jeśli chcemy aby balon się wznosił, musimy zwiększyć siłę wyporu (np. podgrzewając gaz w balonie), albo zmniejszyć siłę ciężkości (np. wyrzucając balast). Niestety, nie można balonem wznieść się dowolnie wysoko, ponieważ w górnych partiach atmosfery powietrze jest tak rzadkie (a więc i lekkie), że wyprodukowanie gazu od niego lżejszego staje się prawie niemożliwe (przynajmniej w tych warunkach w jakich ma funkcjonować ten gaz w powłoce balonu). Opuszczenie balonu wymagać będzie z kolei oziębienia gazu w balonie, lub wypuszczenia części tego gazu. Jeśli balon ma utrzymywać się na stałej wysokości należy utrzymywać wartość siły wyporu na tym samym poziomie co siła ciężkości. Używa się dwa podstawowe typy balonów:
Pierwsza metoda tworzenia balonów latających ma tę zaletę, że nie wymaga energii do tego, aby balon pozostawał w górze. Drugi sposób z kolei daje większą kontrolę nad wznoszeniem się i opuszczaniem. Najlżejszym gazem używanym w balonach jest wodór. Ma on jednak jedną ogromna wadę - bardzo łatwo go zapalić (wodór jest wręcz wybuchowy). Dlatego znacznie bezpieczniejszym gazem używanym do wypełniania powłoki balonu jest hel. Jest on całkowicie niepalny, jednak jest cięższy i dlatego trzeba znacznie użyć większego balonu helowego niż wodorowego, aby unieść ten sam ładunek. |
|||||||||||||||||||
Powrót na górę strony - ctrl Home |